Low Po₂ conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers.

نویسندگان

  • Li Zuo
  • Amy Shiah
  • William J Roberts
  • Michael T Chien
  • Peter D Wagner
  • Michael C Hogan
چکیده

Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po₂ conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po₂ compared with a value approximating normal resting Po₂. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po₂ (30 Torr), low Po₂ (3-5 Torr), high Po₂ with ebselen (antioxidant), or low Po₂ with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po₂ treatment was greater than during high Po₂ treatment, and ebselen decreased ROS generation in both low- and high-Po₂ conditions (P < 0.05). ROS accumulated at a faster rate in low vs. high Po₂. Force was reduced >30% for each condition except low Po₂ with ebselen, which only decreased ~15%. We concluded that single myofibers under low Po₂ conditions develop accelerated and more oxidative stress than at Po₂ = 30 Torr (normal human resting Po₂). Ebselen decreases ROS formation in both low and high Po₂, but only mitigates skeletal muscle fatigue during reduced Po₂ conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low PO2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

Li Zuo, Amy Shiah, William J. Roberts, Michael T. Chien, Peter D. Wagner, and Michael C. Hogan Department of Medicine, University of California, San Diego, La Jolla, California; Department of Biological Sciences, Oakland University, Rochester, Michigan; Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University ...

متن کامل

Skeletal Muscle Contractions Induce Acute Changes in Cytosolic Superoxide, but Slower Responses in Mitochondrial Superoxide and Cellular Hydrogen Peroxide

Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in...

متن کامل

Phosphorylating pathways and fatigue development in contracting Xenopus single skeletal muscle fibers.

To investigate the differential contribution of oxidative and substrate-level phosphorylation to force production during repetitive, maximal tetanic contractions, single skeletal muscle fiber performance was examined under conditions of high-oxygen availability and anoxia. Tetanic force development (P) was measured in isolated, single type-1 muscle fibers (fast twitch; n = 6) dissected from Xen...

متن کامل

Reactive oxygen species formation during tetanic contractions in single isolated Xenopus myofibers.

Contracting skeletal muscle produces reactive oxygen species (ROS) that have been shown to affect muscle function and adaptation. However, real-time measurement of ROS in contracting myofibers has proven to be difficult. We used amphibian (Xenopus laevis) muscle to test the hypothesis that ROS are formed during contractile activity in isolated single skeletal muscle fibers and that this contrac...

متن کامل

The effect of phytochemical compounds on indicators of oxidative stress, inflammation and skeletal muscle damage caused by physical activity

Physical activities are associated with increased production of reactive oxygen species. The production of reactive oxygen species is dependent of the intensity, duration and type of activity. Although the physiological amounts of reactive oxygen species are necessary to regulate cell reactions, their excessive production can cause numerous damages to the structure and function of cells and wea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 304 11  شماره 

صفحات  -

تاریخ انتشار 2013